Step of Proof: decidable-filter
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
decidable-filter
:
T
:Type,
L
:(
T
List),
P
:({
x
:
T
| (
x
L
)}
).
(
x
L
. Dec(
P
(
x
)))
(
L'
:
T
List. (
L'
L
& (
x
:
T
. (
x
L'
)
((
x
L
) &
P
(
x
)))))
latex
by ((InductionOnList)
CollapseTHEN (Auto
))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
T
List
C1:
3.
P
: {
x
:
T
| (
x
[])}
C1:
4.
x
[]. Dec(
P
(
x
))
C1:
L'
:
T
List. (
L'
[] & (
x
:
T
. (
x
L'
)
((
x
[]) &
P
(
x
))))
C
2
:
C2:
1.
T
: Type
C2:
2.
T
List
C2:
3.
u
:
T
C2:
4.
v
:
T
List
C2:
5.
P
:({
x
:
T
| (
x
v
)}
).
C2: 5.
(
x
v
. Dec(
P
(
x
)))
(
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
)))))
C2:
6.
P
: {
x
:
T
| (
x
[
u
/
v
])}
C2:
7.
x
[
u
/
v
]. Dec(
P
(
x
))
C2:
L'
:
T
List. (
L'
[
u
/
v
] & (
x
:
T
. (
x
L'
)
((
x
[
u
/
v
]) &
P
(
x
))))
C
.
Definitions
[]
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
L1
L2
,
x
L
.
P
(
x
)
,
x
.
t
(
x
)
,
x
.
A
(
x
)
,
Dec(
P
)
,
x
(
s
)
,
f
(
a
)
,
{
x
:
A
|
B
(
x
)}
,
(
x
l
)
,
[
car
/
cdr
]
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
s
=
t
,
A
List
,
type
List
,
t
T
,
,
Type
Lemmas
iff
wf
,
sublist
wf
,
l
all
wf
,
decidable
wf
,
l
member
wf
origin